2,220 research outputs found

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory

    Use of system identification techniques for improving airframe finite element models using test data

    Get PDF
    A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory

    Portacaval Shunt for Portal Hypertensive Gastropathy

    Get PDF
    Portal hypertensive gastropathy is a vascular disorder of the gastric mucosa distinguished by ectasia of the mucosal capillaries and submucosal veins without inflammation. During 1988 to 1993, 12 patients with biopsyproven cirrhosis (10 alcoholic, 2 posthepatitic) were evaluated and treated prospectively by portacaval shunt for active bleeding from severe portal hypertensive gastropathy. Eleven patients had been hospitalized for bleeding three to nine times previously, and one was bleeding uncontrollably for the first time. Requirement for blood transfusions ranged from 11 to 39 units cumulatively, of which 8 to 30 units were required specifically to replace blood lost from portal hypertensive gastropathy. Admission findings were ascites in 9 patients, jaundice in 8, severe muscle wasting in 10, hyperdynamic state in 9. Child's risk class was C in 7, B in 4, A in 1. Ten of the 12 patients had previously received repetitive endoscopic sclerotherapy for esophageal varices, which has been reported to precipitate portal hypertensive gastropathy. Eight patients had failed propranolol therapy for bleeding. Portacaval shunt was performed emergently in 11 patients and electively in 1, and permanently stopped bleeding in all by reducing the mean portal vein-inferior vena cava pressure gradient from 251 to 16 mm saline. There were no operative deaths, and two unrelated late deaths after 13 and 24 months. During 1 to 6.75 years of followup, all shunts remained patent by ultrasonography, the gastric mucosa reverted to normal On serial endoscopy, and there was no gastrointestinal bleeding. Recurrent portal-systemic encephalopathy developed in only 8% of patients. Quality of life was generally good. It is concluded that portacaval shunt provides definitive treatment of bleeding portal hypertensive gastropathy by eliminating the underlying cause, and makes possible prolonged survival with an acceptable quality of life

    Development of a Method to Generate a Simplified Finite Element Model for an Electrical Switchboard Cabinet

    Get PDF
    Electrical switchboards are one of the key pieces of equipment used in operations of most critical facilities such as hospitals and emergency services buildings. Unfortunately, past observations have shown that the switchboard cabinet and its contents may be vulnerable to damage or failure during an earthquake. An electrical switchboard cabinet is a complex structure typically constructed using cold-formed steel frame members enclosed by steel panels and containing a variety of switchgear and bus bars. The panels are usually fastened to the steel members by screws, and the steel members are connected together by bolts or screws. The structural behavior of the cabinet can be evaluated using shake table testing and/or high fidelity finite element models. However, these methods are relatively expensive, highly specific, and interpretation of the results may be difficult. Therefore, a method to formulate a simplified finite element model for the cabinet is proposed in this study. The simplified model consists of beam elements (Timoshenko), shell elements and springs. This model can be constructed and executed computationally at a lower cost, and interpretation of the results is a simpler assignment. The present model has the capability to capture the effect of warping deformation in the frame members and possible nonlinear behaviors of the cabinet, such as: local buckling at the end of frame members due to high bending moments, failure of the screw connections and buckling of the panels. The simplified model is validated using a high fidelity model of the cabinet under 1st-order and 2nd-order pushover analyses. Future work to incorporate structural models for the internal components is also discussed

    Incorporation of Elastic Local Buckling in a Plain Channel Section Beam Subjected to Double-Curvature Bending: An Effective-Width Approach

    Get PDF
    When electrical cabinets are subjected to lateral loads, such as earthquakes, the beams of the cabinet frame typically experience double-curvature bending deformation. These beams are usually constructed from cold-formed plain channel sections so they are vulnerable to elastic local buckling near their ends, where high stresses from applied loads are more likely to develop. To capture local buckling behavior, structural engineers typically use high-fidelity finite element models, but this approach can be complex and computationally expensive. A Timoshenko beam element model is simpler and less computationally costly but it is not capable of capturing local buckling behavior. In this paper, a hybrid Timoshenko beam element model augmented with nonlinear nodal springs is proposed to capture elastic local buckling. Local buckling behavior is computed using cross sectional moment-curvature data generated by an effective-width equation, and the results of computations are validated using a high fidelity finite element model (referred to as the benchmark model) of the beam. The resulting reduced rotational stiffness is incorporated in nonlinear elastic rotational nodal springs introduced at the beam ends. A comparison of the hybrid and benchmark model results is presented to confirm the accuracy of the hybrid model

    ErbB2 enhances mammary tumorigenesis, oncogene-independent recurrence and metastasis in a model of IGF-IR-mediated mammary tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The type I insulin-like growth factor receptor (IGF-IR) and ErbB2 (Her-2) are receptor tyrosine kinases implicated in human breast cancer. Both proteins are currently the subject of targeted therapeutics that are used in the treatment of breast cancer or which are in clinical trials. The focus of this study was to utilize our inducible model of IGF-IR overexpression to explore the interaction of these two potent oncogenes.</p> <p>Results</p> <p>ErbB2 was overexpressed in our RM11A cell line, a murine tumor cell line that overexpresses human IGF-IR in an inducible manner. ErbB2 conferred an accelerated tumor onset and increased tumor incidence after injection of RM11A cells into the mammary glands of syngeneic wild type mice. This was associated with increased proliferation immediately after tumor cell colonization of the mammary gland; however, this effect was lost after tumor establishment. ErbB2 overexpression also impaired the regression of established RM11A tumors following IGF-IR downregulation and enhanced their metastatic potential.</p> <p>Conclusion</p> <p>This study has revealed that even in the presence of vast IGF-IR overexpression, a modest increase in ErbB2 can augment tumor establishment <it>in vivo</it>, mediate resistance to IGF-IR downregulation and facilitate metastasis. This supports the growing evidence suggesting a possible advantage of using IGF-IR and ErbB2-directed therapies concurrently in the treatment of breast cancer.</p

    Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide.

    Get PDF
    Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route

    Adaptive Control of Truss Structures for Gossamer Spacecraft

    Get PDF
    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances

    Adaptive Control of Truss Structures for Gossamer Spacecraft

    Get PDF
    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances
    corecore